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Hillslope Topography From Unconstrained
Photographs1

Arjun M. Heimsath 2 and Hany Farid3

Quantifications of Earth surface topography are essential for modeling the connections between physi-
cal and chemical processes of erosion and the shape of the landscape. Enormous investments are made
in developing and testing process-based landscape evolution models. These models may never be ap-
plied to real topography because of the difficulties in obtaining high-resolution (1–2 m) topographic
data in the form of digital elevation models (DEMs). Here we present a simple methodology to extract
the high-resolution three-dimensional topographic surface from photographs taken with a hand-held
camera with no constraints imposed on the camera positions or field survey. This technique requires
only the selection of corresponding points in three or more photographs. From these corresponding
points the unknown camera positions and surface topography are simultaneously estimated. We com-
pare results from surface reconstructions estimated from high-resolution survey data from field sites
in the Oregon Coast Range and northern California to verify our technique. Our most rigorous test
of the algorithms presented here is from the soil-mantled hillslopes of the Santa Cruz marine terrace
sequence. Results from three unconstrained photographs yield an estimated surface, with errors on the
order of1 m, that compares well with high-resolution GPS survey data and can be used as an input
DEM in process-based landscape evolution modeling.

KEY WORDS: landscape evolution, geomorphology, process-based modeling, digital elevation
model (DEM), photogrammetry, structure from motion.

INTRODUCTION

Landscape form is the result of physical and chemical processes acting upon the
surface materials of the Earth. Connections between form and process are the
hallmarks of geomorphic study and, increasingly, the call for geomorphologists
is to quantify the processes shaping the land surface. This direction differs from
quantification of observations by seeking to derive relationships between exter-
nal forces and landscape form by solving the conservation of mass equation.
These mathematical representations of physical processes can be thought of as
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“Transport Laws” (Dietrich and others, 2002; Dietrich and Montgomery, 1998)
and are grounded in early work by Culling (1960, 1963, 1965), Kirkby (1967,
1971), and Smith and Bretherton (1972). The fundamental connections between
process and form were articulated, however, far earlier by Gilbert (1909) and Davis
(1892) and remain widely recognized.

Process quantification is tested and applied by numerical modeling, and the
application of mathematical models to problems of landscape evolution depends
on having high-resolution topographic data from real landscapes represented in
the form of digital elevation models (DEMs) (e.g., Dietrich and others, 1995;
Montgomery and Dietrich, 1992; Moore, O’Loughlin, and Burch, 1988). For
the purposes of this paper we focus on the small catchment, or hillslope scale
where the process-based model is most relevant (Dietrich and Montgomery, 1998;
Montgomery and Dietrich, 1992; Zhang and Montgomery, 1994). Successful meth-
ods of obtaining and applying topographic data necessary to solve geomorphic
problems have included laser-total station surveys (e.g, Heimsath and others,
1997), GPS-total station surveys (e.g., Santos and others, 2000), air-photo dig-
itization (e.g., Dietrich and others, 1995), airborne laser altimetry surveys (e.g.,
Roering, Kirchner, and Dietrich, 1999), and satellite imagery (e.g., Duncan and
others, 1998). Satellite imagery has the obvious problem that its present resolution
cannot capture landscape form at a process-based scale. Each of these methods is
extremely expensive to apply and, ironically, uncertainty at a process-based scale
tends to increase with expense, thus justifying the need for a more widely available,
relatively inexpensive and user-friendly approach.

Aerial photography has long been used as an efficient method of generating
topographic maps and, more recently, DEMs, for geomorphic applications. The
labor, expense, and skill necessary to convert stereo pairs of air photos into high-
resolution 3D (three-dimensional) data is, however, costly, while the resolution of
the DEMs offered by the USGS and other agencies is too coarse for process-based
modeling at realistic scales (Dietrich and others, 2002; Dietrich and Montgomery,
1998; Zhang and Montgomery, 1994). Laser altimetry offers great promise to
provide DEMs with high resolution (1–2 m vertical) over large areas, but is still
cost-prohibitive for most researchers. Recent applications of ground-based pho-
togrammetry have made significant advances at very high resolutions (e.g., Barker,
Dixon, and Hooke, 1997; Hancock and Willgoose, 2001; Heritage and others, 1998;
Lane, Chandler, and Porfiri, 2001) and at the landscape scale (e.g., Aschenwald
and others, 2001), but still require high degrees of constraints upon the position
of the cameras and the measurements of all scaling parameters. Reliance on ap-
plication specific third-party software packages (e.g., Heritage and others, 1998;
Lane, 2000) adds to the constraints on using ground-based photogrammetry. Auto-
mated digital photogrammetry (e.g., Chandler, 1999; Lane, James, Crowell, 2000;
Singh, Chapman, and Atkinson, 1997; Stojic and others, 1998) is a relatively new
technique that offers great promise, but also relies entirely on third-party software
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and is also tightly constrained in its parameter requirements. The ideal is to have a
transparent methodology, allowing clear user interface with the mathematical gen-
eration of the DEM, and no parametric constraints on the position of the camera.

Here we present a technology with important geomorphic field applications to
extract high-resolution topographic data from a set of unconstrained photographs
taken with a hand-held camera (there is no requirement on the camera being
digital or traditional, though slides or prints need to be scanned at high resolution
to create a digital image). We realized the importance of this technique from
work in field settings where the expense of any of the above methods was and
continues to be prohibitive. It is also a technique that enables generating data for
regions of the landscape that cannot be reached to place targets of the kind used by
Heritage and others (1998) and Barker, Dixon, and Hooke (1997), for examples.
Importantly, the success of our methodology does not depend on any complicated
field calibration or training and can be accomplished following even the most na¨ıve
field exploration. We present results to verify a technique with broad application
for geomorphologists seeking to quantify the topography of diverse landforms
and the application of this tool will enable much further exploration of landscape
evolution models at the process-based scale.

ESTIMATING SURFACE TOPOGRAPHY

Figure 1 illustrates the general problem of estimating surface topography
from a collection of photographs. An arbitrary 3D scene is imaged from sev-
eral distinct camera positions. A number of corresponding feature points need to
be extracted from the resulting 2D (two-dimensional) images. From these point

Figure 1. Given a collection of photographs from distinct cameras (solid dots)
of an arbitrary scene, the camera positions and 3D scene structure need to be
simultaneously estimated.
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Figure 2. The perspective projection of a pointEq from 3D world coordinates to 2D
image coordinates.

correspondences we would like to estimate the 3D structure (topography) of the
imaged scene. If the position of each camera is known then this problem would
be relatively straightforward. In the absence of such information, however, the
problem is considerably more challenging. Within the Computer Vision com-
munity, this problem falls under the general heading of structure from motion
(SFM). While SFM has received considerable attention (e.g., Boufama, Mohr,
and Veillon, 1993; Faugeras, 1992, 1993; Hartley, Gupta, and Chang, 1992; Ma
and others, 2000; Maybank, 1993; Poelman and Kanade, 1997; Taylor, Kriegman,
and Anandan, 1991; Trigges, 1996), a successful implementation under real-world
conditions still poses considerable challenges.

Factorization techniques, while not optimal, provide a simple yet effective
approach to SFM (Han and Kanade, 1999; Poelman and Kanade, 1997; Tomasi
and Kanade, 1992). We first review one such technique (Poelman and Kanade,
1997), and then show how new constraints unique to surface topography improve
the general estimation accuracy.

Imaging Model

Under an ideal pinhole camera model the projection of a point in 3D onto a
2D image plane, Figure 2, is given by the perspective projection equations:4

x = f Ei t(Eq −Et)
Ekt(Eq −Et) and y = f Ej t(Eq −Et)

Ekt(Eq −Et) , (1)

4A word on notation. Throughout, matrices will be denoted with capital letters, column vectors asEv
and row vectors asEvt, (wheret denotes transpose),|Ev| denotes vector length, andEu× Ev denotes vector
cross product.
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Figure 3. The paraperspective projection of three points from 3D world coordinates to
2D image coordinates.

whereEi , Ej , andEk form the coordinate system of the camera,Et is the translation
between the origins of the camera and world coordinate systems,Eq is a point in
the 3D world coordinate system, andf is the camera focal length.5 Since the final
structure estimation will only be within a scale factor, Ambiguities section, we may
assume thatf = 1. The inherent nonlinear form of these equations makes their
form computationally inconvenient. Paraperspective projection is a linear approx-
imation to perspective projection that affords a more computationally tractable
solution for recovering 3D structure (Aloimonos, 1990).

Geometrically, the paraperspective projection of a 3D point involves two
steps, Figure 3. The point is first projected onto a hypothetical plane parallel to the
image plane. The projection is along the ray connecting the camera focal point to
the center of this plane. The point is then projected according to the perspective
projection model, Equation (1). Because the hypothetical plane is parallel to the
image plane, this projection is a linear transformation. The paraperspective pro-
jection equations are given by

x = El t Eq + tx and y = Emt Eq + ty, (2)

where,

El =
Ei − tx Ek
−Ekt Et and Em=

Ej − ty Ek
−Ekt Et , (3)

5The focal length is the distance between the image plane and the camera center (focal point) as
measured along theEk axis (optical axis).
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and,

tx =
Ei t Et
−Ekt Et and ty =

Ej t Et
−Ekt Et , (4)

where, for simplicity, but without a loss of generality, it is assumed that the
world coordinate system and the hypothetical plane are centered at the center
of mass of the points being projected. These equations, unlike pers-
pective projection, are linear with respect to the camera and structure
parameters.

Point Correspondences

Consider now, a collection ofp points,Eqi , seen fromn ≥ 3 distinct cameras.
Denote theith point in imagej as the coordinate pair (xj (i ) yj (i )). A collection
of such points may be obtained from digital images either by hand, or through an
automatic extraction procedure (e.g., Lucas and Kanade, 1981). Selecting points
by hand involves choosing objects (e.g., stones, bare patches, leaves) identifiable
at a pixel scale across all three images. The selected points are packed into a single
2n× p measurement matrix:

W =



x1(1) · · · x1(p)
...

...
...

xn(1) · · · xn(p)
y1(1) · · · y1(p)

...
...

...
yn(1) · · · yn(p)


. (5)

Under a model of paraperspective projection, Equations (2)–(4), the measurement
matrix is of the form

W = C S+ T, (6)

where the columns of the 3× p shape matrixS contain the 3D coordinates of
the pointsEqi . The 2n× 3 matrixC and the 2n× p matrix T embody the camera
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positions and are given by

C =



El t
1
...
El t
n

Emt
1

...
Emt

n


and T =



tx1
...

txn

ty1
...

tyn


(1 · · ·1). (7)

Given a measurement matrixW, and known camera positions (matricesC and
T), it would be trivial to solve Equation (6) for the desired 3D structure matrix
S. In the absence of such knowledge, however, the problem is considerably more
challenging. The problem is made more tractable, however, by observing that since
W is a product of a 2n× 3 and 3× p matrix, it will be rank deficient, with a rank
of at most 3. In the next section, this rank deficiency is exploited to simultaneously
estimate the camera position and scene structure.

Camera and Structure Estimation

Given corresponding 2D points from three or more images, our goal is to
determine the 3D coordinates of these points. These 2D coordinates form the
measurement matrix, Equation (5). As per our model, Equation (6), the translation
matrix T , Equation (7), can be estimated directly as

txj =
1

p

p∑
i=1

xj (i ) and ty j =
1

p

p∑
i=1

yj (i ), (8)

for j ∈ [1, n]. The translation portion,T , of Equation (6) can be subtracted from
the measurement matrix,W, by subtractingtx j from row j , and ty j from row
n+ j . The 3D camera position,C, and scene structure,S, will be simultaneously
estimated from this “zero-meaned” matrix,Wz.

The matrixWz is first decomposed according to the singular value decompo-
sition (SVD) as

Wz = U D V, (9)

whereU andV are orthonormal matrices andD is a diagonal matrix. Since the
measurement matrix is, in the absence of noise, at most rank 3, we can expect there
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to be at most three nonzero diagonal elements in the matrixD. As such, these three
matrices can be further decomposed as

U = ( U1 | U2 )

D =
(

D1 0

0 D2

)

V =
(V1

−
V2

)
, (10)

where the matrices of interestU1, D1, andV1 are of size 2n× 3, 3× 3, and 3× p,
respectively. And where, by the rank deficiency ofWz, D2 is a zero matrix, and
hence,Wz = U1 D1 V1. As per our model, Equation (6), the estimated 3D camera
positions and scene structure are given by

C̃ = U1

√
D1 and S̃=

√
D1 V1, (11)

where the square root is applied to the individual diagonal elements of the matrix
D1. This decomposition is unfortunately not unique since for any invertible matrix
M,Wz = C S= (C M) (M−1 S). In other words we have recovered the 3D camera
position and scene structure but only within a linear transformation. What remains
then is to impose additional constraints in order to determine the form of the linear
transformationM .

Metric Constraints

Ideally, metric constraints would be placed on the camera matrixC by insist-
ing that the estimated coordinate system,Ei , Ej , Ek, of each camera are unit length and
orthogonal to one another. Such a constraint, unfortunately, leads to a nonlinear
minimization. As a compromise we ask first that the vectorsEi andEj simply have
the same magnitude. From Equation (3), the vector length constraint yields the
following relationship:

|El j |2
1+ tx2

j

= | Emj |2
1+ ty

2
j

[
= 1(Ekt

j Et j
)2
]
, (12)
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for j ∈ [1, n]. The orthogonality constraint then yields the following:

El t
j Emj =

tx j ty j(Ekt
j Et j
)2

= tx j ty j

1

2

(
|El j |2

1+ tx2
j

+ | Emj |2
1+ ty

2
j

)
. (13)

Overn images, these constraints provide 2n constraints on the desired matrixM .
While these constraints are nonlinear in the matrixM , they are linear in the

symmetric matrixQ = M t M . As such, Equations (12)–(13) form an overcon-
strained system of linear equations in the six unique elements of the symmetric
matrix Q, and are solved using standard least-squares. FromQ, the desired matrix
M is estimated by decomposing according to the SVD (Q = U D V), from which
M = U

√
D. The final camera position and scene structure are then simply:C̃ M

andM−1S̃. The columns ofM−1S̃ contain the estimated 3D coordinates of each
point Eqi .

Camera Parameters

It is relatively straightforward to show that each camera coordinate system,
Ei , Ej , Ek, can be estimated from the previously estimated camera matrix,C̃ M,
(i.e.,El and Em, Equation (3)), as follows:

Ek = G−1 Eh, Ei = El ′ × Ek, and Ej = Em′ × Ek, (14)

where,

G =


(El ′ × Em′)t

El ′t

Em′t

 and Eh =

 1

−tx
−ty

 , (15)

and

El ′ =
El √1+ t2

x

|El | and Em′ =
Em
√

1+ t2
y

| Em| . (16)
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From the estimated camera coordinate system, it is also straightforward to compute
the translation vector as follows:

Et =


Ei t

Ej t

−Ekt


−1 tx tz

ty tz
tz

 , (17)

where,

tz =
√

1

2

(
1+ t2

x

|El |2 +
1+ t2

y

| Em|2
)
. (18)

Estimation Refinement

As a final refinement we perform a nonlinear minimization on each of the
camera positions, (Ei , Ej , Ek, Et) j , and scene structure,Eqi . Each 3D point is projected,
under perspective projection, Equation (1), through each of the estimated camera
positions and compared to the measured 2D positions. The error metric,E, takes
the form

E =
p∑

j=1

n∑
i=1

[xj (i )−
Ei t

j (Eqi −Et j )

Ekt
j (Eqi −Et j )

]2

+
[

yj (i )−
Ej t

j (Eqi −Et j )

Ekt
j (Eqi −Et j )

]2
 , (19)

and is minimized using standard gradient descent minimization. This minimization
is initialized with the results of the estimate under the paraperspective imaging
model. This minimization is performed iteratively, where on each iteration each
camera position is separately minimized and then the position of each 3D point is
separately minimized. This entire process is repeated until the difference in error
between successive iterations is below a specified threshold.

Smoothness Constraint

In the most general case, one is reluctant to introduce explicit constraints
on the structure to be estimated. In the case of estimating surface topography,
however, it is reasonable to impose a smoothness constraint on the final estimated
structure. This is similar to “removing sinks” in most landscape evolution models.
We impose a smoothness constraint by encouraging the estimated structure to be
locally piecewise planar. This is accomplished by performing a gradient descent
minimization on the estimated 3D elevation that minimizes the magnitude of the
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second derivative in elevation averaged across the entire estimated structure. This
minimization is incorporated in a sequential fashion to the minimization described
in the previous section.

This constraint, which typically would not be added to a general purpose SFM
algorithm, has the advantage of better conditioning the numerical stability of the
surface topography estimation. It does have the slight disadvantage of potentially
dulling sharp peaks in the topography. Since the smoothness constraint is imposed
over a relatively small area this dulling effect should not, however, be particularly
severe.

Ambiguities

There are several inherent ambiguities in the estimated scene structure. The
first is that the structure can only be estimated within an arbitrary scale factor and
rigid-body rotation. The scale ambiguity can be resolved with explicit knowledge
of the distance between any two points in the scene, or size of any object in the
scene (e.g., a rock or bush known to be 1 m wide), while the rigid-body ambiguity
can be resolved from the 3D position of three or more scene points. The second is
a sign ambiguity that arises from the factoring of the final transformation matrix
Q = M t M . This ambiguity manifests itself in that the same structure reflected
about any axis will yield identical results. Visual cues (e.g., a ridge crest is higher
than the valley bottom) in the image can be used to resolve this ambiguity without
the need for a field survey.

Estimation Results

Shown along the left portion of Figure 4 are three synthetically generated
images of a virtual 10 cm unit cube placed at a distance of 250 cm from three
virtual cameras with effective focal lengths of 3.5 cm, and rotated by−10, 0, or
10 deg about vertical, and translated horizontally by 5, 0, or−5 cm. Shown in the
lower right portion of Figure 4 is the true (filled circle) and estimated (open circle)
structure of the cube. The slight errors in the reconstruction are due most likely to
the inherent limitations of the approximate paraperspective imaging model. Since
the structure is estimated only within a scale factor and arbitrary rotation, the
estimated structure is scaled and rotated to bring it into correspondence with the
true structure (previous section).

RESULTS

Shown in Figures 5 and 6 are noses from two landscapes previously surveyed
with laser total stations as part of work first reported in Heimsath and others (2001)
and Heimsath and others (1997), respectively. Both soil mantled, convex-up noses
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Figure 4. Structure estimation from three images. Shown in the top
right is the virtual imaging model (not to scale). Shown to the left are the
three images from which the 3D structure is estimated. Shown below is
the true and estimated structure. The solid lines and filled dots represent
the actual structure, and the dashed lines and open circles represent the
estimated structure.

show the characteristic form of hillslopes shaped by diffusion-like sediment trans-
port processed as first articulated by Gilbert (1909) and Davis (1892), helping to
direct the work of others cited above. Despite their similar forms, the landscapes are
located in different climatic and tectonic environments as described in Heimsath
and others (2001), Montgomery and others (1997), and Roering Kirchner, and
Dietrich (1999) for the Oregon Coast Range site, Figure 5, and Dietrich and others
(1995), Heimsath and others (1997, 1999), and Montgomery and Dietrich (1988),
for the northern California Coast Range site, Figure 6. Differences in morphology
are evident here, and we explore the process-based significance of these morpho-
logic differences elsewhere (Heimsath and Farid, unpublished data). With results
presented here we focus on the nature of the photogrammetric reconstructions.
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Figure 5. Photograph shows the ridge, Coos3, re-
ported in Heimsath and others (2001) and adjacent un-
channeled hollow, visible because of clear-cut forestry
in the Oregon Coast Range. In the middle panel is a
fitted surface to 100 points (black dots) from the orig-
inal laser total station survey. This surface compares
extremely well to data from laser altimetry as shown in
Heimsath and others (2001), and also compares well
with the estimated surface shown in the lower panel.
Units are in meters with arbitrary values.

941
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Figure 6. Photograph shows the more subdued to-
pography of northern California showing Nose 4 used
in Heimsath and others (1997, 1999). In the middle
panel is a fitted surface to 100 points (black dots)
from the original laser total station survey. This sur-
face compares well to data from the air-photo-based
DEM of Dietrich and others (1995) as discussed in
Heimsath and others (1999), and compares very well
to the estimated surface shown in the lower panel.
Units are in meters with arbitrary values.

An area nearby the ridge used in Figure 5 is shown in Figure 7 and is chosen
to test our methods over changes in form from ridge to valley (note the changes
in curvature from convex-up to concave-up and back again, corresponding to
ridge-valley-ridge, in photograph and data). Data used for this part of the field
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Figure 7. Photograph shows a ridge-valley sequence
near the ridge of Figure 5. We extracted 200 points
from the high-resolution laser altimetry data refer-
enced above to construct the surface in the middle
panel. This significantly more complex surface com-
pares quite favorably to the estimated surface mapped
in the lower panel. Units are in meters with arbitrary
values.
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area are from the laser altimetry data used for some of the calculations reported by
Roering, Kirchner, and Dietrich (1999) and to generate the field map of Heimsath
and others (2001). We extracted 200 points randomly from the roughly 2 m scale
original data points to plot the “Real” topography on the middle panel.

Also shown in Figures 5, 6, and 7 are the estimated surfaces. The mean
error in the absolute value of the difference in elevation between the real and
estimated surfaces are 1.01, 1.18, and 1.99 m with a standard deviation of 0.82,
0.81, and 1.62 m, respectively. This error is computed from the fitted surfaces
on an identical sampling lattice. The errors in local slope (first derviative of el-
evation) are 11.9, 13.4, and 14.9%, respectively. In these examples, only a sin-
gle photograph was available, so we simply projected the known 3D points onto
three virtual cameras following a model of perspective projection, Equation (1).
The resulting “images” yielded the necessary 2D point correspondences, from
which the unknown camera positions and surface structure were simultaneously
estimated.

The landscape shown in Figure 8 is from the Santa Cruz marine terrace
sequence studied extensively across disciplines (e.g., Anderson, Densmore, and
Ellis, 1999; Perg, Anderson, and Finkel, 2001; Rosenbloom and Anderson, 1994).
We use this landscape as a well-constrained test of our methodology that will
have further application when comparing landscape development across terraces of
known ages (Heimsath and Farid, unpublished data). Here we use 100 hand selected
points shown in the three photographs of the same nose to simultaneously estimate
the unknown camera positions and surface topography. The bottom two surfaces
show the real (from GPS total station survey) and estimated surface topographies
of the nose shown in the photographs. The mean error in elevation between the
real and estimated surfaces is 0.90 m with a standard deviation of 0.75 m.

In summary, the steps from photographs to surface topography are as follows:

1. Photograph the target surface from three distinct viewpoints (the views
should be separated by at least a few meters). As a general rule we rec-
ommend moving left and right of a central viewing position by at least
a few meters and rotating the camera about the vertical axis by approxi-
mately 10–30 deg. If photographing with a traditional camera, digitize the
photographs at a minimum of 600 dpi.

2. In each photograph select between 50 and 100 feature points (e.g., a point
on a boulder, a leaf on the ground, the base of a shrub, etc.). The resulting
point positions form the measurement matrix of Equation (5). Our software
has a simple interface that allows users to manually extract and store the
pixel location of each point.

3. Follow the series of steps outlined in the previous section in order to
determine the surface topography. Source code for these computations are
freely available upon request.
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DISCUSSION

Computational Limitations

Factorization techniques as described here afford a simple and yet effective
approach for the recovery of surface topography from photographs taken with
uncalibrated and unknown camera positions. This technique requires the selection
of corresponding points (on the order of 100) from three or more photographs, from
which the camera positions and surface topography are simultaneously estimated.
Computationally, this technique begins with a paraperspective approximation to the
geometry of image formation. This approximation affords a closed-form analytic
solution for surface topography, and is further refined through successive nonlinear
minimizations that assume a more realistic imaging model, and imposes an overall
smoothness constraint on the recovered structure. These nonlinear minimizations
yield a more accurate and stable estimate.

There are, of course, a number of different computational approaches from
which to choose. We have adopted this particular technique because in our ex-
perience other more sophisticated techniques appear to be very sensitive to even
slight (subpixel) errors in point correspondences. Whereas, the proposed tech-
nique requires only a relatively coarse point selection process. There are still,
nevertheless, some limitations. As can be seen in Figures 5–8, there is a con-
sistent flattening of the estimated structure. This is due most likely to the ini-
tial paraperspective approximation that assumes that the points being imaged lie
on a fronto-parallel plane. This is a fundamental limitation and its effect can be
minimized by photographing from a vantage point that is in line with the sur-
face normal of the overall topography. Even with this limitation, we find that
surface topography can be approximated with, on average, an error of 1–2 in
elevation.

Related Photogrammetric Methods

Since Icarus attempted flight to get a better look at the Earth’s surface, hu-
mans have been developing more and more efficient ways to map large areas
of the landscape. Recent developments in photogrammetry have led to significant

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 8. Photographs show nose from Blackrock terrace (Terrace 4) on the Santa Cruz, California
marine terrace sequence as reported in Rosenbloom and Anderson (1994). Crosses show 100 hand
selected corresponding points. These points are used to simultaneously estimate the camera positions
and surface topography. Second from the bottom is a fitted surface from 76 survey points obtained
with GPS. This surface compares quite favorably with the estimated surface shown below. Units are
in meters with arbitrary values.
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improvements over the painstaking methods of digitizing aerial photographs. These
methods range from the landscape (e.g., Aschenwald and others, 2001) to the ex-
perimental scale (e.g., Hancock and Willgoose, 2001). Studies at the intermediate
scales, of interest when considering process-based landscape evolution, appear to
be at the reach scale (≈10 m directed at fluvial erosion studies (e.g., Barker, Dixon,
and Hooke, 1997; Heritage and others, 1998), rather than at hillslope (>100 m
length scale) or even first or second-order watershed scales (>1 ha). Debris flow
mapping by Coe, Glancy, and Whitney (1997), for example, relied on DEMs built
from aerial stereo-photographs. The other fundamental limitation of the methods
presented in these and other studies is the reliance on third-party software. The
procedure we present is an entirely stand-alone process that enables close control
on the nature of the surface reconstruction. While there is indeed great appeal
to have automated programs extract a DEM from landscape-scale photographs,
we do not believe such a procedure exists in a way that is affordable to most
researchers.

Aschenwald and others (2001) present a study with interests most similar to
the ones that could be addressed by the technique we developed here. Their geo-
rectification of terrestrial, high-oblique photographs for input into a GIS matches
our interest in generating high-resolution topographic data. The DEM used in
their study was, however, extracted separately, from existing contour lines rather
from the photographic image. Their orthorectified photo images are then draped
upon the existing DEM and precisely located by using 15 ground control points
(over about 3 km2) and used to compare preanalyzed time-series images. Meth-
ods used are not transparent, however, because of the use of software packages.
This study presents a combination of disparate methods used previously to explore
different questions. In contrast, we present algorithms to generate 3D coordinates
from three or more corresponding points whose 2D coordinates are their loca-
tions on the 2D photographic image. Like the study of Aschenwald and others
(2001), no ground placement of specific points is required, but unlike their study,
our methods actually generate the DEM that represents the landscape. Resolu-
tion of the DEM depends, at this point, on how many corresponding points are
user selected from between the photographs. We are currently exploring algo-
rithms that will select points automatically, similar to the technique fulfilled by
software used by, for example, Heritage and others (1998) and reviewed in Lane
(2000).

High-resolution extraction of DEMs from photographs at a field (Barker,
Dixon, and Hooke, 1997; Heritage and others, 1998; Lane, 2000; Westaway, Lane,
and Hicks, 2000) or experimental (Chandler, 1999; Hancock and Willgoose, 2001;
Lane, Chandler, and Porfiri, 2001) scale is a technique currently reliant upon third-
party software, but with applications similar to ours. The bottom line for workers
such as these is the generation of a DEM. While the accuracies reported by Barker,
Dixon, and Hooke (1997), Hancock and Willgoose (2001), Heritage and others
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(1998), and Lane, James, and Crowell (2000) are admirable, the constraints needed
are unreasonable for the field applications that our method is directed toward. For
example, Hancock and Willgoose (2001) and Lane, Chandler, and Porfiri (2001)
use digital cameras placed precisely above their experimental landscape and are
able to extract DEMs of the evolving features at a millimeter resolution, but they
were measuring an area less than 2.5 m2. At least eight precisely located con-
trol points were also used to calibrate the photogrammetry, a task that would
be unreasonable in remote field settings. Both Barker, Dixon, and Hooke (1997)
and Heritage and others (1998), for examples, apply photogrammetry to the flu-
vial environment and use their DEMs to determine morphological change. Control
points were surveyed in precisely and used in both studies to calibrate the extracted
DEM. Additionally, the camera positions were precisely located in relation to the
studied areas. Both these requirements, and their reliance on application specific
third-party software, make their procedures unwieldy for our applications. Our
implementation relies on the popular and general-purpose numerical analysis
package MatLab.

Geomorphic Applications

Application of process-based geomorphic transport laws towards understand-
ing how landscape form changes with time depends on having high-resolution to-
pographic data from real landscapes. Process-based modeling typically estimates
how landscapes evolve under different climatic, tectonic, and anthropogenic in-
fluences (e.g., Anderson, Densmore, and Ellis, 1999; Dietrich and others, 1995;
Montgomery and Dietrich, 1992; Moore, O’Loughlin, and Burch, 1988). The lim-
itations on the above methods of generating high-resolution DEMs motivated this
study and our low-cost methodology to extract topographic data is applicable to
landscapes across a wide range of environmental conditions. The only stipulation
is that the landscape can be photographed (i.e., dense vegetative cover presents a
visual barrier that even airborne laser altimetry, with its ability to penetrate through
some vegetative cover, has difficulty overcoming) that at least three frames capture
the same set of points, and that there is some estimate of scale between all of the
pictures. When these conditions are met, our methodology can yield high resolu-
tion DEMs at scales dependent only on the scale captured by the photographs. The
example chosen for field verification here provides the ideal first-cut test of the
methodology.

Landscape development shown by the ridge-hollow topography (Fig. 8) at
this emergent marine terrace site is constrained by the time since the terrace
emerged from Pacific Ocean. Extreme differences in terrace ages estimated by
different studies (most recently examined by (Perg, Anderson, and Finkel, 2001)
can therefore be tested with a simple landscape evolution model coupled with de-
tailed topographic data extracted nonintrusively by methods we report here. These
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data could, for example, be used with the terrace emergence modeling effort of
Anderson, Densmore, and Ellis (1999), combined with a process-based landscape
evolution model (Dietrich and others, 1995) to more accurately define the up-
lift history of the Santa Cruz terrace sequences. Specifically, differences between
Perg, Anderson, and Finkel’s determination of the emergence ages of the terraces
(Perg, Anderson, and Finkel, 2001) and those by Bradley and Addicott (1968) and
Bradley and Griggs (1976) are up to an order of magnitude. Physical parameters
that help constrain the processes shaping these landscapes are relatively (compared
to other landscapes) well known for the region (e.g., Heimsath and others, 1997;
Rosenbloom and Anderson, 1994) and can therefore be used to test which estimate
of terrace age is more appropriate. The only thing missing is the topographic data,
which is where the methodology we present here becomes relevant. This field
area is especially good for testing such methodology as the landscape is easily
accessible (Fig. 8) and can therefore be thoroughly surveyed as shown here. Such
an example is one of numerous that will benefit from this methodology.

CONCLUSIONS

Making connections between landscape form and the geomorphic processes
responsible for shaping that form has been of interest to geomorphologists for
over 100 years. Increasingly, our understanding of how landscape surfaces are
shaped under different geomorphic processes is improved by numerically model-
ing real landscapes represented by DEMs. Typical methods for extracting DEMs
from remotely sensed imagery are expensive and can require large investments of
time by skilled workers. The method we present here is ideally suited for use on
landscapes that are difficult to reach, or when field time and resources are lim-
ited. With relatively little time behind the computer and only a few photographs,
this methodology enables the extraction of accurate high-resolution topographic
data. We find it especially appealing that the algorithms are transparent to the
field scientist and that the results can be readily compared to the photographed
surface.

In the photographic process there is an inherent loss of information, namely
3D structure. It is possible to estimate this 3D information from several photographs
taken from two or more calibrated cameras (i.e., cameras with known positions
relative to one another). Surprisingly, this information can also be estimated from
three or more photographs with unknown camera positions. Building on work from
the structure from motion literature, we have presented a simple and effective com-
putational technique for estimating 3D structure from three or more photographs.
This process is particularly attractive as it imposes no constraints on the scene be-
ing imaged or on the camera’s positions. Mathematically, this technique involves
standard tools from Linear Algebra and Numerical Analysis available in most
standard mathematical software packages (e.g., MatLab, Mathematica, or Maple).
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Our implementation employs MatLab: the complete source code is freely available
upon request.
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